Assume that $a$, $b$, and $c$ are complex parameters.
For large $n$, we have $$ \begin{align}\frac{(a)_n(b)_n}{(c)_n}\frac{1}{n!} &= \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(a+n) \Gamma(b+n)}{\Gamma(c+n)} \frac{1}{\Gamma(1+n)} \frac{\Gamma(n)}{\Gamma(n)} \\ &= \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(a+n)}{\Gamma(n)} \frac{\Gamma(b+n)}{\Gamma(n)} \frac{\Gamma(n)}{\Gamma(c+n)} \frac{1}{n} \\ & \sim \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} n^{a}n^{b}n^{-c}n^{-1} \tag{1} \\&= \frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} n^{a+b-c-1}. \end{align} $$
Therefore, by the p-series test, the series converges absolutely for $|z|=1$ and $\Re(a + b -c) <0$.
$(1)$ $\Gamma(\beta+n) \sim \Gamma(n)n^{\beta} $ as $n \to \infty$
To show that the series converges conditionally for $|z|=1$, $z \ne 1$, and $0 \le \Re(a+b-c) <1$, we can use the proof of Dirichlet's test .
Saying that $|z|=1$, $z \ne1$, is equivalent to saying that $z^n= e^{i n \theta} = \cos(n \theta) + i \sin(n\theta)$ for some $\theta$ between $0$ and $2 \pi$.
And the partial sums of $\cos(n \theta)$ and $\sin (n \theta)$ are bounded. (See here, for example.)
Looking at the proof of Dirichlet's test, we need to show that $$ \sum_{n=1}^{\infty} \left| n^{a+b+c-1} - (n+1)^{a+b+c-1}\right| \tag{2}$$ converges for $\Re(a+b-c) < 1$.
To show that it converges, let $\alpha = a+b-c$.
Then for large $n$, we have $$ \begin{align} n^{\alpha-1}-(n+1)^{\alpha-1} &= n^{\alpha-1}-n^{\alpha-1} \left(1+ \frac{1}{n} \right)^{\alpha-1} \\ &=n^{\alpha-1} -n^{\alpha-1} \left(1+ \frac{\alpha-1}{n} + \mathcal{O}(n^{-2}) \right) \\ &= (1- \alpha) n^{\alpha-2} + \mathcal{O}(n^{\alpha-3}). \end{align}$$
Therefore, as $n \to \infty$, $$|n^{\alpha-1} - (n+1)^{\alpha-1}| \sim |1-\alpha|n^{\Re(\alpha)-2},$$ which, by the p-series test, shows that $(2)$ converges for $\Re(\alpha) = \Re(a +b -c) < 1$.