Let $\textbf{u}=(u_1(x,y,z),u_2(x,y,z),u_3(x,y,z))$ and $\textbf{v}=(v_1(x,y,z),v_2(x,y,z),v_3(x,y,z))$ be two smooth vector fields in $\mathbb{R}^3$, is there a simplified form of the following difference $$\nabla\times((\textbf{u}\cdot\nabla)\textbf{v})-\nabla\times((\textbf{v}\cdot\nabla)\textbf{u})~~?$$ where $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ is the del operator and $(\textbf{u}\cdot\nabla)\textbf{v}=\left(u_1\frac{\partial}{\partial x}+u_2\frac{\partial}{\partial y}+u_3\frac{\partial}{\partial z}\right)\textbf{v}$.
My goal is to simplify above difference in the special case where $\textbf{v} = \nabla\times\textbf{u}$ and $\nabla\cdot\textbf{u}=0$, but it will be nice if there is a universal simplification to the difference when $\textbf{u}$ and $\textbf{v}$ are unrelated, then one could apply that to the special case.