Since @Vladimir_Reshetnikov gave an approach by transforming the integral into $$\int_0^{\infty}\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\frac{\pi}{2}+\text{arccot}\frac{6y}{8-y^2}\right)\, dy$$
I kinda don't want to waste it. Here's the solution to this integral.
Notice that $\text{arctan}(\frac{6y}{8-y^2})=\arctan(y/2)+\arctan(y/4)$
$$I=\int_0^{\infty}\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\frac{\pi}{2}+\text{arccot}\frac{6y}{8-y^2}\right)\, dy$$
$$=\int_0^{\infty}\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\pi-\text{arctan}\frac{6y}{8-y^2}\right)\, dy$$
$$=\int_0^{\infty}\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\pi-\arctan(y/2)-\arctan(y/4)\right)\, dy$$
$$=\int_0^{\infty}\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\arctan(2/y)+\arctan(4/y)\right)\, dy$$
substituting $1/y=x$ gives
$$I=\int_0^{\infty}\frac{6(8x^2+1)}{x(4x^2+1)(16x^2+1)}(\arctan(2x)+\arctan(4x))\, dx$$
Note the partial fraction decomposition
$$\frac{6(8x^2+1)}{(4x^2+1)(16x^2+1)}=\frac{4}{16x^2+1}+\frac{2}{4x^2+1}$$
Which the right hand side is $\frac{d}{dx}(\tan^{-1}(2x)+\tan^{-1}(4x))$
$$I=\int_0^{\infty} \frac{1}{x}(\tan^{-1}(2x)+\tan^{-1}(4x))\frac{d}{dx}(\tan^{-1}(2x)+\tan^{-1}(4x))\, dx$$
Integration by parts gives
$$=\frac{1}{2}\int_0^{\infty} \frac{(\tan^{-1}(2x)+\tan^{-1}(4x))^2}{x^2}\, dx=\int_0^{\infty} \frac{(\tan^{-1}(x)+\tan^{-1}(2x))^2}{x^2}\, dx$$
$$I=3{\underbrace{\int_0^{\infty}\frac{\text{arctan}^2 x}{x^2}\, dx}_{J_1}}+2{\underbrace{\int_0^{\infty}\frac{\text{arctan}(x)\text{arctan}(2x)}{x^2}\, dx}_{J_2}}$$
Integrating by parts gives
$$J_1=\int_0^{\infty}\frac{\text{arctan}^2 x}{x^2}\, dx=2\int_0^{\infty}\frac{\tan^{-1} x}{x(1+x^2)}\, dx$$
$$=2\int_0^{\infty}\tan^{-1}(x)\left(\frac{1}{x}-\frac{x}{1+x^2}\right)\, dx$$
integrating by parts again gives
$$J_1=-\int_0^{\infty}\frac{2\log x-\log(1+x^2)}{1+x^2}\, dx=\int_0^{\infty}\frac{\log(1+x^2)}{1+x^2}\, dx$$
$$J_1=\pi\log(2)$$
We will need the following result to solve for $J_2$ \begin{equation}\label{a} \int_0^{\infty}\frac{\log(1+a^2 x^2)}{1+b^2 x^2}\, dx=\frac{\pi}{b}\log\left(1+\frac{a}{b}\right) \end{equation}
Which is easily proved using Leibniz rule.
We use the same approach to compute $J_2$:
$$J_2=\int_0^{\infty}\frac{\text{arctan}(x)\text{arctan}(2x)}{x^2}\, dx$$
IBP gives
$$=\int_0^{\infty}\frac{2\tan^{-1} x}{x(1+x^2)}\, dx+\int_0^{\infty}\frac{\tan^{-1}(2x)}{x(1+x^2)}\, dx$$ $$=\int_0^{\infty}\tan^{-1}(x)\left(\frac{2}{x}-\frac{x}{1+4x^2}\right)\, dx+\int_0^{\infty}\tan^{-1}(2x)\left(\frac{1}{x}-\frac{x}{1+x^2}\right)\, dx$$
IBP again gives
$$=-\frac{\pi}{2}\log(4)+\int_0^{\infty}\frac{\log(1+4x^2)}{1+x^2}\, dx-2\int_0^{\infty}\frac{\log x}{1+4x^2}\, dx+\int_0^{\infty}\frac{\log(1+x^2)}{1+4x^2}\, dx$$
$$=-\pi\log(2)+\pi\log 3+\frac{\pi}{2}\log 2+\frac{\pi}{2}\log\left(\frac{3}{2}\right)$$
$$J_2=-\pi\log(2)+\frac{3\pi}{2}\log(3)$$
Putting results together gives
$$I=3J_1+2J_2=3\pi\log 2-2\pi\log 2+3\pi \log 3$$
Which proves the conjectured result.
$$I=\pi\log 54$$