I quote Øksendal (2003).
Let us consider a probability space $\left(\Omega,\mathbb{P},\mathcal{A},\right)$ and a class of functions $f:\left[0,\infty\right]\times\Omega\mapsto\mathbb{R}$.
For $0\le S<T$, $\left(B(t)\right)_{t\ge0}$ a Brownian motion and $f(t,\omega)$ given, we want to define: $$\int_S^T f(t,\omega)dB(t)(\omega)$$ It is reasonable to start with a definition for a simple class of functions $f$ and then extend by some approximation procedure. First assume that $f$ has the form: $$\phi(t,\omega)=\sum_{j\ge0}e_j(\omega)\cdot1_{[j\cdot2^{-n}, (j+1)2^{-n})}(t)$$ where $1$ denotes the indicator function and $n$ is a natural number.
For such functions, it is reasonable to define: $$\int_S^T\phi(t,\omega)dB_t(\omega)=\sum_{j\ge0}e_j(\omega)\left[B_{t_{j+1}}-B_{t_j}\right](\omega)\tag{1}$$ where: $$t_k=t_k^{(n)}=\begin{cases}k\cdot 2^{-n}\hspace{0.3cm}\text{if } S\le k\cdot 2^{-n}\le T\tag{2}\\ S\hspace{0.3cm}\text{if } k\cdot 2^{-n}<S\\ T\hspace{0.3cm}\text{if } k\cdot 2^{-n}>T \end{cases}$$
My doubts concern the part in italics. Namely:
Questions
- Why, according to $(1)$:
\begin{align}\int_S^T\phi(t,\omega)dB_t(\omega)&=\int_S^T\sum_{j\ge0}e_j(\omega)\cdot1_{[j\cdot2^{-n}, (j+1)2^{-n})}(t)dB_t(\omega)\\&=\sum_{j\ge0}e_j(\omega)\left[B_{t_{j+1}}-B_{t_j}\right](\omega)\end{align}?
Is that due to the fact that $\sum_{j\ge0}e_j(\omega)\cdot1_{[j\cdot2^{-n}, (j+1)2^{-n})}(t)$ do not depend on the variable of integration $B_{t}(\omega)$, hence they go outside sign of integration and one has: \begin{align}\int_S^T\phi(t,\omega)dB_t(\omega)&=\int_S^T\sum_{j\ge0}e_j(\omega)\cdot1_{[j\cdot2^{-n}, (j+1)2^{-n})}(t)dB_t(\omega)\\&=\sum_{j\ge0}e_j(\omega)\left[B_{t_{j+1}}-B_{t_j}\right](\omega)\end{align} with $t_k$ as specified in $(2)$ and $\sum_{j\ge0}\left[B_{t_{j+1}}-B_{t_j}\right]=B_{T}-B_{S}$? - Besides, could you please detail the reason why $(2)$ is defined that way? In particular, is there in place the choice of left-end point of every time interval? Why does the value $t_k$ depend on whether $k\cdot2^{-n}$ is positioned? What I would expect instead is something like: $$t_k=t_k^{(n)}=\begin{cases}t_k\hspace{0.4cm}\text{if } k\cdot 2^{-n}\le t_k \le (k+1)\cdot2^{-n}\tag{2.bis}\\ 0\hspace{0.5cm}\text{otherwise} \end{cases}$$