The binomial theorem $$ (1 + z)^r = \sum_{k \geq 0}\binom{r}{k}z^{k} , \quad |z|<1, $$ deals with the sum of the binomial coefficient times $z^{k}$ .
What function would instead result from taking the integral $$ f (z,r) = \int_{0}^{\infty}\binom{r}{t}z^{t}\,\mathrm{d}t\ ? $$ (intending the binomial expressed through the Gamma function: $\displaystyle\binom{r}{t} = \frac{\Gamma(r+1)}{\Gamma(t+1)\Gamma(r-t+1)}$.)
I am just at the beginning of analyzing this curiosity of mine, and before attempting that I would ask your advise, thoughts and references if any already exist. -- update --
Following the interesting @metamorphy's answer, I found another way to demonstrate that, for the bilateral integral $$ I_B (w,z) = \int\limits_{ - \infty }^\infty {\left( \matrix{ z \cr s \cr} \right)w^{\,\,s} ds} $$ since $$ I_B (1,0) = \int\limits_{ - \infty }^\infty {\left( \matrix{ 0 \cr s \cr} \right)ds} = \int\limits_{ - \infty }^\infty {{{\sin \left( {\pi s} \right)} \over {\,\pi s}}ds} = 2^{\,0} = 1 $$ then, by the Vandermonde convolution we get $$ \eqalign{ & I_B (1,z) = \int\limits_{ - \infty }^\infty {\left( \matrix{ z \cr s \cr} \right)w^{\,\,s} ds} \quad \left| {\;0 \le } \right. {\mathop{\rm Re}\nolimits} \left( z \right)\quad = \cr & = \int\limits_{ - \infty }^\infty {\sum\limits_k {\left( \matrix{ z \cr k \cr} \right)\;\left( \matrix{ 0 \cr s - k \cr} \right)} \;ds} = \sum\limits_k {\left( \matrix{ z \cr k \cr} \right)\int\limits_{ - \infty }^\infty {\left( \matrix{ 0 \cr s - k \cr} \right)\;ds} \;} = \cr & = \sum\limits_k {\left( \matrix{ z \cr k \cr} \right)\;} = 2^{\,z} \cr} $$ where for the convolution to be valid it is required that $0 \le \Re (z)$, while the approach used by @metamorphy requires that $-1< \Re (z)$.
In any case it seems that the bilateral integral be more interesting to analyze, but only formally, because it converges only for $|z|=1$.