Does the series converge?
$$\lim_{n \to \infty}\sum_1^n \dfrac{(\log k)^4}{ k^2}$$
Does the series converge?
$$\lim_{n \to \infty}\sum_1^n \dfrac{(\log k)^4}{ k^2}$$
Notice that $\int_1^{\infty}\frac{\ln(x)^4}{x^2}dx = \frac{-24-24 \ln(x) -12 \ln(x)^2-4 \ln(x)^3 -\ln(x)^4}{x}|_1^{\infty}=24$. Since this integral converges your series converges by the integral test.