0

Does the series converge?

$$\lim_{n \to \infty}\sum_1^n \dfrac{(\log k)^4}{ k^2}$$

jimjim
  • 9,855
ROBINSON
  • 2,327

1 Answers1

2

Notice that $\int_1^{\infty}\frac{\ln(x)^4}{x^2}dx = \frac{-24-24 \ln(x) -12 \ln(x)^2-4 \ln(x)^3 -\ln(x)^4}{x}|_1^{\infty}=24$. Since this integral converges your series converges by the integral test.

Wintermute
  • 3,930