I discussed the problem with $x=(2k+1)e$ during the past spring session in my Calculus session. I think it is safe to post details here now.
$$
\begin{align}
n!e&=n!\left(\sum^n_{k=0}\frac{1}{k!}+\sum^\infty_{k=n+1}\frac{1}{k!}\right)\\
&=\Big(\big(n!+ n! + n(n-1)\cdot\ldots\cdot3+\ldots+n(n-1)\big)+n+1\Big)+\Big(n!\sum^\infty_{k=n+1}\frac{1}{k!}\Big)\\
&=\big(P_n+(n+1)\Big)+a_n
\end{align}
$$
where $P_n=n!+ n! + n(n-1)\cdot\ldots\cdot3+\ldots+n(n-1)$ is an even number, and $a_n=n!\sum^\infty_{k=n+1}\frac{1}{k!}$.
We observe that
$$
\begin{align}
\frac{1}{n+1}<a_n=\sum^\infty_{k=1}\frac{1}{(n+1)\cdot\ldots\cdot(n+k)}<\frac{1}{n+1}\sum^\infty_{k=0}\frac{1}{(n+2)^k}=\frac{n+2}{(n+1)^2}
\end{align}
$$
and
$$a_n-a_{n+1}>\frac{1}{n+1}-\frac{n+3}{(n+2)^2}=\frac{1}{(n+1)(n+2)^2}>0$$
As a consequence, for each $m>0$, there exists $M>0$ such that $0<\sin(a_n\pi m)$ is monotone decreasing for $n\geq M$. Also, for $m$ odd
$$\sin(n!m\pi e)=\sin(m P_n\pi+(n+1)m+a_nm)=\sin((n+1)m\pi+a_nm\pi)=(-1)^{n+1}\sin(ma_n\pi)$$
Therefore, the convergence of the series $\sum^\infty_{n=0}\sin(n! \pi m e)$ with $m\geq1$ an odd integer, follows from the convergence of the alternating series $\sum^\infty_{n=1}(-1)^{n+1}\sin(\pi m e a_n)$
I found a similar solution in an old book: Takeuchi, Y., Sequences and Series, Vol 1., Limusa, Mexico 1980.
I think the case $x=\sin 1$ may be treated siimlarly, but extra care is required since the factorial expansion in $\sin 1=\sum^\infty_{n=0}\frac{(-1)^k}{(2k+1)!}$ and $\cos 1=\sum^\infty_{k=0}\frac{(-1)^k}{(2k)!}$ is an alternating sequence. It might be necessary to group the terms in pairs the obtain convergent sequences with positive terms.