0

To compute the following limit problem :

$$\lim_{n\to\infty} \sqrt[n] {\frac {1 - n^2}{1 + n^2}}$$.

Why it's not mathmatically correct way to compute the limit by making the manipulation : $n = \frac{1}{t}$ and compute the limit in the following manner, $n \rightarrow \infty$ so, $t \to 0$?

What's the correct way?

MICKEY
  • 279

3 Answers3

3

Denote

$$L=\lim_{n\to\infty} \sqrt[n] {\frac {1 - n^2}{1 + n^2}}$$

$$\ln L=\lim_{n\to\infty} \frac 1n \ln\Bigg({\frac {1 - n^2}{1 + n^2}}\Bigg)=\frac{i\pi}{\to\infty}\to0$$

$$L=e^0=1$$

DatBoi
  • 4,097
2

$$L=\lim_{n\to\infty} \sqrt[n] {\frac {1 - n^2}{1 + n^2}}$$ Applying Cauchy-d'Alembert criterion: $$L=\lim_{n\to\infty} {\frac {1 - (n+1)^2}{1 + (n+1)^2}}{\frac {1 + n^2}{1 - n^2}}$$ $$L=\lim_{n\to\infty} {\frac {n^2+2n}{n^2+2n+2}}{\frac { n^2+1}{ n^2-1}}$$ $$\implies L=1$$

user577215664
  • 40,943
1

As the natural numbers are a subset of the real numbers, $\lim_{n\to\infty} \sqrt[n] {\frac {1 - n^2}{1 + n^2}} = \lim_{u \to\infty} \sqrt[u] {\frac {1 - u^2}{1 + u^2}}$, where $u$ is a real number.

Let $u = \tan x, x \in [0, \frac{\pi}{2})$ and $x \in \mathbb R$, as the range of $\tan x$ is $[0, \infty)$ in the given domain.

Then $1 - u^2 = \frac{\cos^2 x - \sin^2 x}{\cos^2 x} = \cos(2x) \sec^2 x$, and $1 + u^2 = \sec^2 x$. Hence we need to find:

$$\lim_{x \to \pi/2} {\cos(2x)}^{1 / \tan x} =\lim_{x \to \pi/2} (\cos 2x)^0 = \boxed{1}.$$

as $\lim_{x \to \pi/2} \tan x = +\infty \Rightarrow \lim_{x \to \pi/2} \frac{1}{\tan x} = 0$.

Toby Mak
  • 17,073