Let $\mathbb{R}[x_1, \ldots , x_n]$ denote the commutative ring of all polynomials in $n$ variables $x_1, \ldots, x_n$ with coefficients in $\mathbb{R}$.
Given a set with $k$ polynomials $\{f_1, . . . , f_k\}$ of $\mathbb{R}[x_1, \ldots, x_n]$, we consider the algebraic subset of $\mathbb{R}^n$, $V(f_1, . . . , f_k)$, which is defined as $$V(f_1, \ldots , f_k) = \{(a_1, . . . , a_n) \in \mathbb{R}^{n} : f_i(a_1, . . . , a_n) = 0 \mbox{ for all } 1 \leq i \leq k\}.$$ Analogously, we can consider the algebraic subset $Z(f_1, \ldots , f_k)$ of $\mathbb{C}^n$ as $$Z(f_1, \ldots , f_k) = \{(a_1, . . . , a_n) \in \mathbb{C}^{n} : f_i(a_1, \ldots , a_n) = 0 \mbox{ for all } 1 \leq i \leq k\}.$$
I want to learn about the relation between irreducible components of $V(f_1, \ldots , f_k)$ and $Z(f_1,\ldots, f_k)$. Is the number of irreducible components of $V(f_1, \ldots , f_k)$ less than or equal to the number of irreducible components of $Z(f_1, \ldots , f_k)$? For instance, if $n=2$, $k=1$ and $f_1(x_1,x_2) = x_1^2 + x_2^2$, we have $V(f_1) = {(0,0)}$ and $$Z(f_1) =\{(x,\sqrt{-1}x):x\in \mathbb{C}\} \cup \{(x,-\sqrt{-1}x):x\in \mathbb{C}\}.$$