Can someone evaluate the limit $\lim_{x \to 0}\frac{\sin 3x}{x}$ without applying L'Hopital's rule to $\frac{\sin 3x}{x}$ to make it $\frac{3\cos 3x}{1}=3$?
Asked
Active
Viewed 32 times
0
-
Notice $\frac{\sin(3x)}{x}=\frac{\sin(3x)}{3x} \cdot 3$ – Oct 15 '20 at 15:56
-
@MatthewHolder How do you show $\lim \frac {\sin x}x = 1$ without L'hopital (or equivalent)? – fleablood Oct 15 '20 at 16:05