If $f \in L_p \cap L_q$ and $1 \leq p < r < q < \infty$ then $f \in L_r$.
Proof: Let $E = \{ x \in X: \left\lvert f \right\rvert \leq 1 \}$. Then, $$\int \left\lvert f \right\rvert^r \mathrm{d}\mu = \int_E \left\lvert f \right\rvert^r \mathrm{d}\mu+\int_{E^C} \left\lvert f \right\rvert^r \mathrm{d}\mu \leq \int_E \left\lvert f \right\rvert^p \mathrm{d}\mu+\int_{E^C} \left\lvert f \right\rvert^q \mathrm{d}\mu$$ $$\leq \int \left\lvert f \right\rvert^p \mathrm{d}\mu+\int \left\lvert f \right\rvert^q \mathrm{d}\mu < \infty.$$ Thus, $f \in L_r$.
I just want to make sure I am somehow not missing anything. Thanks