I have the following integral $$\int_{-\infty}^{\infty}e^{-x^2}\cos(2bx)\,\mathrm{d}x$$ How can I prove this integral equals $\sqrt{\pi}e^{-b^2}$ by using the residue theorem?
For $b>0$ and $\gamma_R$ a middle circle of radius $R$ up $x$-axis, I tried doing \begin{align*} \oint_{\gamma_R}e^{-z^2}e^{2ibz}\,\mathrm{d}z&=0 \end{align*} since $f(z)=e^{-z^2}e^{2ibz}$ is continous over $\gamma_R$.