I am trying to show that the function $$f(x_1,x_2)=2x_1+(x_2-x_1^2)^2+(1-x_1)^2$$ is coercive on $\mathbb{R}^2$.
To show the function is coercive, we require $\|(x_1,x_2)\|\rightarrow+\infty\implies f(x_1,x_2)\rightarrow +\infty.$ We proceed by using polar coordinates. This gives \begin{align} f(r,\theta)&=2r\cos\theta+(r\sin\theta-r^2\cos^2\theta)^2+(1-r\cos\theta)^2 \\ &=r^2+1+r^4\cos^4\theta-2r^3\sin\theta\cos^2\theta\\ &\geq r^2+1-2r^3\sin\theta\cos^2\theta. \\ \end{align} However, I am unsure on how to proceed. I require $r\rightarrow +\infty\implies f(r,\theta)\rightarrow +\infty$, but I am unable to show how $r^2+1-2r^3\sin\theta\cos^2\theta\rightarrow +\infty$.