Let $|x|$ be the standard Euclidean norm, $|x|_1 = |x_1|+\dots + |x_n|$ and $|x|_\infty = \max\{|x_1|,\dots,|x_n|\}$. Show that $|x|_\infty \leqslant |x| \leqslant|x|_1 \leqslant n|x|_\infty.$
For $|x| \leqslant|x|_1$ if I write $x = \sum_{i=1}^n x_ie_i$ I have that
$|\sum_{i=1}^n x_ie_i| \leqslant \sum_{i=1}^n |x_i||e_i| = \sum_{i=1}^n |x_i| = |x|_1.$
But I'm not sure how to show the first inequalities with $|x|_\infty$... What should I do with these?