I am trying to prove the following two inequalities using AM-GM
First, I must show that the following inequality must hold : $$ \frac{x_{1}x_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}}\leq\frac{x_{1}^{2}}{x_{1}^{2}+y_{1}^{2}}+\frac{x_{2}^{2}}{x_{2}^{2}+y_{2}^{2}} $$ and $$\frac{y_{1}y_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}}\leq\frac{y_{1}^{2}}{x_{1}^{2}+y_{1}^{2}}+\frac{y_{2}^{2}}{x_{2}^{2}+y_{2}^{2}} $$
My Attempt : Let $x_{1},x_{2},y_{1},y_{2}\in\mathbb{R}$,let $x=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $y=\sqrt{y_{1}^{2}+y_{2}^{2}}$ it appears that I could pove that $\sqrt{\sum_{i=1}^{2}x_{i}^{2}y_{i}^{2}}\leq xy$ as follows : $$ xy=\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)\left(\sqrt{y_{1}^{2}+y_{2}^{2}}\right)=\sqrt{x_{1}^{2}y_{1}^{2}+x_{2}^{2}y_{2}^{2}+x_{1}^{2}y_{2}^{2}+x_{2}^{2}y_{1}^{2}}\geq \sqrt{x_{1}^{2}y_{1}^{2}+x_{2}^{2}y_{2}^{2}} $$ I noticed that it implies that $\frac{\sqrt{x_{1}^{2}y_{1}^{2}+x_{2}^{2}y_{2}^{2}}}{\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)\left(\sqrt{y_{1}^{2}+y_{2}^{2}}\right)}\leq 1$
I am unable to continue I hope someone gives me a hint.