Not as slick at d.k.o.'s approach but a little more direct. Assume $n>1$.
Notice for $k=n+1, n+2, \ldots$ we have $$P(N(x)=k)=P(S_{k}>x,S_{k-1} \leq x)=P(S_{k-1} \leq x,X_k>x-S_{k-1})$$
Since $S_{k-1}$ and $X_k$ are independent, we can say
$$P(N(x)=k)=\int_0^xP(X_k>x-t)f_{S_{k-1}}(t)dt=\int_0^x\frac{t^{k-2}}{(k-2)!}(t+1-x)dt$$
The last equality utilized the Irwin Hall distribution for the sum of $n$ iid uniformly distributed random variables. Evaluating this integral gives $$P(N(x)=k)=\frac{x^{k-1}}{(k-1)!}-\frac{x^k}{k!}$$
So finally,
$$P(N(x)>n)=P(N(x)=n+1)+P(N(x)=n+2)+\ldots=\sum_{k=n+1}^{\infty}\bigg[ \frac{x^{k-1}}{(k-1)!}-\frac{x^k}{k!} \bigg]=\frac{x^n}{n!}$$