We wish to show that $\gcd(a,b) = d \implies \gcd(a^{3},b^{3}) = d^{3}$. Would just like to make sure my proof is correct.
Let $a = p_1^{k_1}p_2^{k_2}p_3^{k_3}...p_n^{k_n}$
Let $b = q_1^{k_1}q_2^{k_2}q_3^{k_3}...q_n^{k_n}$
Define $d = \gcd(a,b) = r_1^{k_1}r_2^{k_2}r_3^{k_3}...r_n^{k_n}$, where $r_i = \{p,q | p_i = q_j\}$
$a^3 = p_1^{k_1}...p_n^{k_n}p_1^{k_1}...p_n^{k_n}p_1^{k_1}...p_n^{k_n}$
$b^3 = q_1^{k_1}...q_n^{k_n}q_1^{k_1}...q_n^{k_n}q_1^{k_1}...q_n^{k_n}$
Thus, $\gcd(a,b) = d^3$ because each factor $p_i$ and $q_j$ now appears three times when we cube $a$ and $b$. Is this sufficient?