I've got two distributions
$$ p_1(x) = \cfrac{1}{\sqrt{2\pi}\sigma_1}\cdot e^{-x^2/2\sigma_1^2} $$
and similarly
$$ p_2(x) = \cfrac{1}{\sqrt{2\pi}\sigma_2}\cdot e^{-x^2/2\sigma_2^2} $$
I'm told that using the convolution theorem is the way to go so we'll start from there.
I know that $F(p_1(x)) = \int\limits_{-\infty}^\infty p_1(x) e^{2\pi ikx} dx$
so $$ \begin{align} F(p_1(x))F(p_2(x)) &= \int\limits_{-\infty}^\infty \cfrac{1}{\sqrt{2\pi}\sigma_1}\cdot e^{-x^2/2\sigma_1^2} e^{2\pi ikx} dx \cdot \int\limits_{-\infty}^\infty \cfrac{1}{\sqrt{2\pi}\sigma_2}\cdot e^{-x^2/2\sigma_2^2} e^{2\pi ikx} dx \\ &= \cfrac{1}{\sqrt{2\pi}\sigma_1}\cdot \cfrac{1}{\sqrt{2\pi}\sigma_2} \int\limits_{-\infty}^\infty e^{-x^2/2\sigma_1^2} e^{2\pi ikx} dx \cdot \int\limits_{-\infty}^\infty e^{-x^2/2\sigma_2^2} e^{2\pi ikx} dx \\ &= \cfrac{1}{2\pi\sigma_1 \sigma_2} \int\limits_{-\infty}^\infty e^{-x^2/2\sigma_1^2} e^{2\pi ikx} dx \cdot \int\limits_{-\infty}^\infty e^{-x^2/2\sigma_2^2} e^{2\pi ikx} dx \\ \end{align} $$
And then I'm not sure what to do from here... I know that I'll take the inverse Fourier transform at the end and that will reveal the final gaussian distribution but I'm not sure how to evaluate these next couple steps... I've never used Fourier before and haven't taken a class that uses integrals in a complex space.
The other part that I don't quite understand is how you took the inverse Fourier. Could you try coloring that in a bit more for me?
– financial_physician Sep 24 '20 at 22:10