For (1), since the only idempotent of a group is the identity$^\dagger$, solve $x\ast x=x$ for $x$.
$$3x^2+20x+30=x$$ has solutions $$x=\frac{-19\pm\sqrt{19^2-4(3)(30)}}{6},$$ i.e., $$x=-3\quad\text{or}\quad \color{red}{x=-10/3}.$$
For (2), plug your solution $e$ to (1) in $x\ast y=e$; solve for $y$ in terms of $x$.
Fix $x\in\Bbb R\setminus \{-10/3\}$. Solve $$3xy+10x+10y+30=-3;$$ that is, $$y=\frac{-10x-33}{3x+10}.$$
For (3), since $3xy=3yx$ and $10x+10y=10y+10x$, the operation is abelian.
$\dagger$: Suppose otherwise, that there is an idempotent $y\in G$ such that $y\neq e$. Then $y=y^2$ by definition. Multiply on the left, say, by $y^{-1}$; then
$$\begin{align}
e&=y^{-1}y\\
&=y^{-1}(yy)\\
&=(y^{-1}y)y\\
&=ey\\
&=y,
\end{align}$$
a contradiction.