Let $X$ be a closed, connected, orientable smooth n-manifold and let $Y\subset X$ be a smooth closed m- submanifold.
- Express homology of the complement $H_*(X\smallsetminus Y;\mathbb{Z})$ in terms of (co)homology of the pair $(X,Y)$.
- Compute $H_0(X\smallsetminus Y;\mathbb{Z})$ when $m=n-1$.
- Suppose $X$ has the integral homology of a sphere. Express $H_*(X\smallsetminus Y;\mathbb{Z})$ in tems of (co)homology of $Y$.
- Let $K\subset S^3$ be a knot, i.e., the image of an embedding $f:S^1\rightarrow S^3$. Compute $H_1(S^3\smallsetminus K;\mathbb{Z})$. How good is this invariant at distinguishing knots?
My attempts:
I use MV for $A=N $ (tubular neighborhood of $Y$) and $B=X\smallsetminus Y$ to get: $H_3(X)\rightarrow H_2(A\cap B)\rightarrow H_2(N)\bigoplus H_2(X\smallsetminus Y)\rightarrow H_1(A\cap B)\rightarrow H_1(N)\bigoplus H_1(X\smallsetminus Y)\rightarrow H_1(X) \rightarrow \dots$ How can I describe $A\cap B$? Is $N\approx D^{m+1}\times Y$ ($D$ being a disc)? How does $H(X,Y)$ come into play?
Is $H_0(X\smallsetminus Y;\mathbb{Z})$ simply due to its disconnectedness $\mathbb{Z}^2$?
/
By Aleksander duality $H_q(S^n\smallsetminus X)\approx H^{n-q-1}(X)$ is $H_1(S^3\smallsetminus K;\mathbb{Z})=H^{1}(S^1)=\mathbb{Z}$. I would prefer a comment on relevance of that knot invariant.
I thank you in advance for any clue.