Let $A$ a nonsingular $n\times n$ matrix and $a$ $\in \mathbb{R}^n$. Show that if $a^TAa \neq -1$, then
$(A+aa^T)^{-1}= A^{-1} -\frac{1}{1+a^TAa}A^{-1}aa^TA^{-1}$
I just don't see how I can apply any invertible matrixes properties here. What approach should I take?