0

Let $A$ a nonsingular $n\times n$ matrix and $a$ $\in \mathbb{R}^n$. Show that if $a^TAa \neq -1$, then

$(A+aa^T)^{-1}= A^{-1} -\frac{1}{1+a^TAa}A^{-1}aa^TA^{-1}$

I just don't see how I can apply any invertible matrixes properties here. What approach should I take?

StubbornAtom
  • 17,932

3 Answers3

2

Hint: Try multiplying out $$(A+aa^T)\left(A^{-1} -\frac{1}{1+a^TAa}A^{-1}aa^TA^{-1}\right)$$ and see what you get. Note that you may have to appropriately group terms to simplify this to get the identity matrix.

JimmyK4542
  • 55,969
1

Hint Try using the following the Woodbury matrix identity, https://en.wikipedia.org/wiki/Woodbury_matrix_identity.

\begin{align} (A+UCV)^{-1} = A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1} \end{align}

dgadjov
  • 1,349
1

This is called the Sherman–Morrison formula.

Check the statement and the proof in the linked Wikipedia article.