Let $F:[0,\infty) \to [0,\infty)$ be a continuous function satisfying $F(1)=0$, which is strictly increasing on $[1,\infty)$, and strictly decreasing on $[0,1]$. Suppose also that $F|_{(1-\epsilon,1+\epsilon)}$ is convex for some $\epsilon>0$. Suppose that $F$ is not affine on any subinterval.
Let $\hat F(x) = \sup \{ h(x) \mid \text{$h$ is convex on $[0, \infty)$}, h \le F \} \, $ be the convex envelope of $F$. Let $c\in (0,1)$, and suppose that $\hat F(c) < F(c)$.
Question: Let $x,y \in [0,\infty)$ and $\lambda \in [0,1]$ satisfy $c = \lambda \, x + (1-\lambda)\, y$ and $\hat F(c) = \lambda \, F(x) + (1-\lambda) \, F(y)$. Are such $x,y$ unique?
(Here is an argument for the existence of such $x$ and $y$, under slightly different conditions).
We always have $ \hat F(c) \le \lambda \, \hat F(x) + (1-\lambda) \, \hat F(y) \le \lambda \, F(x) + (1-\lambda) \, F(y), $ so $\hat F(c) = \lambda \, F(x) + (1-\lambda) \, F(y)$ if and only if $\hat F(x)=F(x), \hat F(y)=F(y)$, and $\hat F$ is affine on $[x,y]$.