2

$$\int_{-\pi}^{\pi} \frac{2x(1+\sin(x))}{1+\cos^2(x)} \ \mathrm dx$$

My attempt:

$$\int_{-\pi}^{\pi} \frac{2x(1+\sin(x))}{1+\cos^2(x)} \ \mathrm dx =\int_{-\pi}^{\pi} \frac{2x}{1+\cos^2(x)} \ \mathrm dx+\int_{-\pi}^{\pi} \frac{2x\sin(x)}{1+\cos^2(x)} \mathrm dx$$ $$=0+\int_{-\pi}^{\pi} \frac{2x\sin(x)}{1+\cos^2(x)} \ \mathrm dx$$

I'm not sure how to proceed further. Integration by parts doesn't seem promising. Neither does any substitution.

Any suggestions?

Toby Mak
  • 17,073
DatBoi
  • 4,097

1 Answers1

1

Consider $$\int_{-\pi}^{\pi}\frac{2x\sin x}{1+{\cos}^2x}\,dx=2\int_{0}^{\pi}\frac{2x\sin x}{1+{\cos}^2x}\,dx$$

Now replace $x$ by $\pi-x$ and add the integrals.

C Squared
  • 3,679