I tried to use Bertsimas and Sim approach for an uncertain linear model, but the thing is the answer I got for the Bertsimas and Sim linear model when Γ = 2 is different from Soyster model's result, I tried other uncertain models and I got the same result for Bertsimas' while it was completely protected against uncertainty and system model.
The Bertsimas & Sim model: $$max \ P_r+P_n $$ $$\begin{cases} -\alpha_1 P_r + \alpha_2 P_N \le \omega_{12} \\ -\alpha_1 P_r + \alpha_2 P_N \ge \omega_{11} \\ -\alpha_1 P_N + \alpha_2 P_r \le \omega_{22} \\ -\alpha_1 P_N + \alpha_2 P_r \ge \omega_{21} \end{cases} $$ $$\begin{cases}P_r\ge0 \\ P_N\ge 0 \end{cases}$$
Bertsimas & Sims model:
$$max \ P_r+P_n $$ $$\begin{cases} -\alpha_1 P_r + \alpha_2 P_N -\lambda_1 \eta -\mu_1 + \mu_2 \le \omega_{12} \\ -\alpha_1 P_r + \alpha_2 P_N -\lambda_1 \eta -\mu_1 + \mu_2 \ge \omega_{11} \\ -\alpha_1 P_N + \alpha_2 P_r -\lambda_2 \eta -\mu_1 + \mu_2\le \omega_{22} \\ -\alpha_1 P_N + \alpha_2 P_r -\lambda_2 \eta -\mu_1 + \mu_2\ge\omega_{21} \end{cases} $$
$$\begin{cases} \ \lambda_1 +\mu_1 \le \hat{\alpha_1} y_1 \\ \ \lambda_2 +\mu_1 \le \hat{\alpha_1} y_2 \\ \ \lambda_1 -\mu_2 \le -\hat{\alpha_2} y_2 \\ \ \lambda_2 -\mu_2 \le -\hat{\alpha_2} y_1 \\ \end{cases} $$ $$\begin{cases}P_r\ge0 \\ P_N\ge 0 \end{cases}$$ $$ \mu_1, \mu_2, y_1, y_2, \lambda_1, \lambda_ \ge 0 $$
I guess there's a problem with one the - behind $\mu \ or \ \hat{\alpha_2}$ but I don't know what did I wrong
Thanks for your help In forward.