$\sum \limits_{i=i}^{n}\frac{1}{1+a_i}=1$ ...(i)
So $a_i \gt 0$ for all $i \in (1, n)$ and for $n \gt 1$.
We have to prove $\sum \limits_{i=1}^{n}\sqrt{a_i}\ge ({n-1})\sum \limits_{i=1}^{n}\frac{1}{\sqrt{a_i}}$
or prove, $\sum _\limits{i=1}^{n} \dfrac{1 + a_i}{\sqrt{a_i}} \ge n\sum \limits_{i=1}^{n}{\frac{1}{\sqrt a_i}}$
or prove, $(\sum _\limits{i=1}^{n} \dfrac{1 + a_i}{\sqrt{a_i}}) \, (\sum \limits_{i=1}^{n} \dfrac{1}{1+a_i}) \ge n\sum \limits_{i=1}^{n}\frac{1+a_i}{\sqrt a_i}{\frac{1}{1+a_i}}$ ...(ii)
WLOG, assume, $a_i \le a_{i+1}$ for $1 \le i \le (n-1)$.
Say, $f(a_i) = \dfrac {1+a_i}{\sqrt a_i} = \sqrt a_i + \dfrac{1}{\sqrt a_i}$. So, for all $a_i \gt 0$, $f(a_i) = f(\dfrac{1}{a_i})$
Say, $g(a_i) = \dfrac {1}{1+a_i}$. We can see $g(a_{i+1}) \le g(a_i)$.
We can see $g(a_i)$ is non-increasing. We now need to prove that $f(a_i)$ is non-decreasing. With that (ii) holds good as per Chebyshev's inequality.
It is easy to see that the function is non-decreasing for $a_i \gt 1$. It is also easy to see that $a_i$ can be $\lt 1$ only for one value of $i$, at max, due to given condition (i).
Say, $a_1 \lt 1$. We also know that $\dfrac {1}{1+a_2} \le 1 - \dfrac {1}{1+a_1} = \dfrac{1}{1+\dfrac{1}{a_1}}$.
So, $a_2 \ge \dfrac{1}{a_1}$ and $f(a_1) = f(\dfrac{1}{a_1}) \le f(a_2) \le ... \le f(a_n)$
With this, we prove that (ii) holds good as per Chebyshev's inequality.