How can I solve this problem using Cauchy's Integral formula or the residues theorem?
$\textbf{Problem:}$ Calculate the integral $$\int_{\mathbb{R}}\frac{e^{-2\pi i \xi}}{ax^{2}+bx+c}dx$$ where $a>0$,$b^{2}-4ac<0$ and $\xi \in \mathbb{R}$.
My attempt: Let $f(x):=\frac{e^{-2\pi i \xi}}{ax^{2}+bx+c}dx$ and let $R>0$ and let $C=C_{1} \cup C_{2}$ where $C_{1}:=\{-R \leq t \leq R: \gamma(t)=t\}$ and $C_{2}=\{0 \leq t \leq \pi: \gamma(t)=Re^{it}\}$. So, we need calculate $$\oint_{C}=\int_{C_{1}}f(z)dz+\int_{C_{2}}f(z)dz$$
But, I don't know how to continue.