The above solution doesn't seem to do the bounds properly:
It says, if we assume $n+\frac 2n < a_n^2 < n+1$ then ${{a_n}^2\over n^2}+{n^2\over {a_n}^2}+2<{\color{red}{n+{2\over n}}\over n^2}+{n^2 \over \color{red}{n+{2\over n}}}+2=2+{n^4+n^2+4+{4\over n^2}\over n^3+2n}$
But as $n+\frac 2n < a_n^2 < n+1$, we do not have $\frac{a_n^2}{n^2} < \frac {n+\frac 2n}{n^2}$ (although we do have $\frac {n^2}{a_n^2} < \frac {n^2}{n+\frac 2n}$) and we have a similar error further down.
What we need is ${{a_n}^2\over n^2}+{n^2\over {a_n}^2}+2<{\color{blue}{n+1}\over n^2}+{n^2 \over \color{red}{n+{2\over n}}}+2=$
The upper bound can be fixed:
$a_{n+1}^2 ={{a_n}^2\over n^2}+{n^2\over {a_n}^2}+2<{n+1\over n^2}+{n^2 \over n+{2\over n}}+2=2+\frac{n^4+n^2 + 2 + \frac 2n}{n^3+2n}=2+\frac {n^4 + 2n^2 -n^2 +2+\frac 2n}{n^3+2n}= 2+n -\frac {n^2-2-\frac 2n}{n^3 +2n}< n+2$
To get the lower bound cannot
$a_{n+1}^2 =\frac {a_n}{n^2}+\frac {n^2}{a_{n}^2} > \frac{n+\frac 2n}{n^2}+\frac{n^2}{n+1}=$
$\frac {(n+\frac 2n)(n+1)+n^4}{n^2(n+1)}=\frac{n^4 +n^2 +2+n+\frac 2n}{n^3+n^2}=$
$\frac{n^4 + n^3 - n^3 -n^2 +3n^2+2+n+\frac 2n}{n^3+n^2}=n-1+\frac{3n^3+2+n}{n^3+n^2} $
The official solution https://angelkiller411.wordpress.com/wp-content/uploads/2013/07/bulgarian-mathematical-olympiads-third-and-fourth-rounds-from-1995-to-2000-more-than-300-problems-with-solutions-260p.pdf page 13 problem 4.
uses that the function $f(x)= \frac xn +\frac nx$ is decreasing when $x < n$.
[If $0< a < b < n$ then $f(a)-f(b)=\frac an + \frac na -\frac bn-\frac nb=\frac{a^2b +n^2b-ab^2-an^2}{abn}=\frac{b(n^2-ab)-a(n^2-ab)}{abn}=\frac{(b-a)(n^2-ab)}{abn} > 0$]
and the induction hypothesis/bounds that $\sqrt n \le a_n \le \frac n{\sqrt {n-1}}< n$ (so $n \le a_n^2 \le \frac {n^2}{n-1}=n+\frac {n+1}{n-1} < n+1$)
As $f(x)$ is decreasing and $\sqrt n \le a_n$ then $a_{n+1} = f(a_n) \le f(\sqrt n)=\frac {\sqrt n}n + \frac n{\sqrt n}=\frac {n+1}{\sqrt n}$.
And as $a_n \le \frac {n}{\sqrt{n-1}}$ we have $a_{n+1}=f(a_n)\ge f( \frac {n}{\sqrt{n-1}})=\frac 1{\sqrt{n-1}} + \sqrt{n-1}=\frac n{\sqrt{n-1}}=\sqrt{\frac{n^2}{n-1}}=\sqrt{n +\frac n{n-1}} > \sqrt{n+1}$
So $\sqrt{n+1} < a_{n+1} < \frac{n+1}{\sqrt n}< n+1$.
Thus we've proven by induction (assuming base case $n=4$) that $\sqrt{n} \le a_n <\frac n{\sqrt{n-1}}$ and so $\lfloor a_n^2 \rfloor = n$.