Problem
let $\mathrm P$ be the set of prime numbers ; $\forall(p,p+2)\in\mathrm P^2: p\times(p+2)=A_1 ,\quad A\in\mathrm N$
where $A_1$is written on the figure : $A_1=a_1^1a_2^1a_3^1....a_{n_0}^1$ where $(a_i^1)_{1\leq i\leq n_0}\subset\mathrm N $
So we put : $$g(n_0)=\displaystyle\sum_{i=1}^{i=n_0}a_i^1=a_1^1..a_{n_0}^1=A_2\quad ,A_2\in\mathrm N$$ Where $A_2$ is written on the figure :
$A_2=a_1^2a_2^2a_3^2...a_{n_1}^2,\quad (a_i^2)_{1\leq i\leq n_1} \subset \mathrm N \quad \quad \text{and}\quad n_1\leq n_0$
So we find : $$g(n_1)=\displaystyle\sum_{i=1}^{i=n_1}a_i^2$$ we reput the step until we finally get :
$$g(1)=A_k=a_1^k=8 $$ for any $(p,p+2)\in \mathrm P^2$
Exemples: $$5\times7=35,\quad g(1)=3+5=8$$ $$11\times13=143,\quad g(1)=1+4+3=8$$ $$29\times31=899,\quad g(2)=8+9+9=26\implies g(1)=2+6=8$$ $$2027\times2029=4204088,\quad g(2)=6+8+5+5+8+3=35\implies g(1)=3+5=8$$ $$7877\times7879=62062883,\quad g(2)=6+2+6+2+8+8+3=35\implies g(1)=3+5=8$$
I applied these steps to almost all pairs of less than $3000$ and other pairs greater than $5000$ and i did not find any pair of primes refuting this property
I found this problem whill studying one of this articles to prove thet prime dont'end using the topologies in this article
I wanted to ask if this problem existes before or not because i searched and found nothing about it
So this problem did not exist, how then can I prove or disprove this problem ,even though I did not find any in these results I await your suggestions and information about this ,thank you