Lemma
If $X$ is a topological space then $$ \partial(A\cap B)\subseteq[\overline{A}\cap\partial B]\cup[\partial A\cap\overline{B}] $$ for any $A,B\subseteq X$.
Corollary
If $X$ is a topological space then $$ \partial(A\setminus B)\subseteq\partial A\cup\partial B $$ for any $A,B\subseteq X$.
Proof. By the first lemma we know that $$ \partial(A\setminus B)=\partial\big(A\cap(X\setminus B)\big)\subseteq[\overline A\cap\partial(X\setminus B)]\cup[\partial A\cap\overline{X\setminus B}]=[\overline A\cap\partial B]\cup[\partial A\cap\overline{X\setminus B}]\subseteq\partial A\cup\partial B. $$ for any $A,B\subseteq X$.
So I ask if generally is $\partial (A\setminus B)=\partial A\cup\partial B$ when $B\subseteq A$ and if not I ask if with some additional hypotheses about $X$ (hausdorff separability, connectedness, etc...) or $A$ and $B$ it could be true. For example if the closure of B is contained in the interior of A then does the equality hold? So could someone help me, please?