Let $(y_k)_{k\in\mathbb{N}}$ be a sequence in $\mathbb{K}$ with the property that for all sequences $(x_k)_{k\in\mathbb{N}}\in\ell^1$ the sequence $\sum_{k=1}^{n} x_k y_k$ has a limit in $\mathbb{K}$ for $n\to\infty$. Prove that $y\in \ell^\infty$.
I tried to define an operator $T_y: \ell^1\rightarrow \ell^1, (x_k)_{k\in\mathbb{N}}\mapsto (x_ky_k)_{k\in\mathbb{N}}$, but as I do not know about absolute convergence of $(x_k y_k)_{k\in\mathbb{N}}$, I am not sure if it really maps to $\ell^1$.