Let $M$ be a smooth manifold of dimension $m$ and $(U,\phi)$, $(V,\psi)$ be two maps on $M$ such that $U\cap V\neq\emptyset$. I will write $\phi=(\phi^1,\dots,\phi^m)$ and $\psi=(\psi^1,\dots,\psi^m)$.
I want to prove that on $U\cap V$, we can write (using Einstein notation) $$\frac{\partial}{\partial \phi^k}=\frac{\partial \psi^i}{\partial\phi^k} \frac{\partial}{\partial \psi^i}$$ for all $k\in\mathbb N\cap[1,m]$.
My attempt: See my answer below.
My question: Is there a more elegant proof?