Solve the following indefinite integral: $$\int \frac{2}{(x^2+2)\sqrt{x^2+4}} dx$$
My approach:
I used the substitution: $x=2\tan t$, $dx=2\sec^2t dt$
$$\int \frac{2}{(x^2+2)\sqrt{x^2+4}} dx=\int \frac{2}{(4\tan^2t+2)\sqrt{4\tan^2t+4}}\cdot 2\sec^2t\ dt$$
$$=\int \frac{4\sec^2t }{2(2\tan^2t+1)2\sec t} dt$$ $$=\int \frac{\sec t}{2\tan^2t+1}dt$$
In numerator I have $\sec t$ but not $\sec^2t$ therefore I can't see a way to take it further. Please help me solve this integral. Thanks in advance.