I am evaluating
$$\int \frac{1}{\cos 2x+3}\mathrm dx\tag1$$
Using Weierstrass substitution:
$$ (1)=\int \frac{1}{\frac{1-v^2}{1+v^2}+3}\cdot \frac{2}{1+v^2}\mathrm dv=\int \frac{1}{v^2+2}\mathrm dv\tag2$$
And then $\:v=\sqrt{2}w$
$$\begin{align}(2)&=\int \frac{1}{\left(\sqrt{2}w\right)^2+2}\sqrt{2}\,\mathrm dw\\&= \frac{1}{2} \int \frac{1}{\sqrt{2}\left(w^2+1\right)}\mathrm dw\\&= \frac{1}{2\sqrt{2}}\arctan \left(w\right) + C\\&= \frac{1}{2\sqrt{2}}\arctan \left(\frac{\tan \left(x\right)}{\sqrt{2}}\right)+C\end{align}$$
Therefore,
$$\int \frac{1}{\cos 2x+3}\mathrm dx = \frac{1}{2\sqrt{2}}\arctan \left(\frac{\tan \left(x\right)}{\sqrt{2}}\right)+C $$
That's a decent solution, but I am wondering if there are any other simpler ways to evaluate this. Can you come up with one?