$V$ is an inner product vector space. If a transformation $T\colon V\to V$ satisfies $\langle T(x), T(y)\rangle = \langle x, y\rangle$ for every vector $x, y \in V$, prove or disprove that $T$ is linear.
Seems true, but can't prove it. Tried plugging $x+y$ into $x,y$ and got $\langle T(x+y), T(x+y)\rangle = \langle T(x)+T(y),T(x)+T(y)\rangle$
but this do not lead to the conclusion. Also I got that $T$ is one-to-one. Does anyone know the answer? Any help is appreciated!