Integrate: $$\int \frac{\tan ^3\left(\ln \left(x\right)\right)}{x}dx$$
My attempt:
$$u=\ln(x) \implies \int \tan ^3\left(u\right)du=\int \tan ^2\left(u\right)\tan \left(u\right)du=\int \left(-1+\sec ^2\left(u\right)\right)\tan \left(u\right)du$$
I'm having trouble after this section. My initial idea was to use $u$-subsituition again. So, $$v=\sec(u) \implies \int \frac{-1+v^2}{v}dv=\int \:-\frac{1}{v}+vdv=-\ln \left|v\right|+\frac{v^2}{2}=-\ln \left|\sec \left(\ln \left(x\right)\right)\right|+\frac{\sec ^2\left(\ln \left(x\right)\right)}{2} + c, c \in \mathbb{R}$$
I'm pretty sure this is correct. I'm curious if there is any other way to solve this (hopefully in an easier manner?)?