To prove:$$\prod_{k=1}^n\sin^2(2^kx)\le\left(\frac34\right)^{n-1}.$$
My approach so far:
We have: \begin{align} \prod_{k=1}^n\sin^2(2^kx)&=\left(\prod_{k=1}^n\sin(2^kx)\right)^2\\\\ &=\left[\Im\left\{\prod_{k=1}^ne^{i\cdot2^kx}\right\}\right]^2\\\\ &=\left[\Im\left\{\exp\left(ix\sum_{k=1}^n 2^k\right)\right\}\right]^2\\\\ &=\left[\Im\Big\{\exp\big(ix(2^{n+1}-2^n)\big)\Big\}\right]^2\\\\ &=\sin^2\left[(2^{n+1}-2^n)x\right]. \end{align}
Now how can I prove that (obviously if I haven't done any mistake so far) :
$\sin^2\left[(2^{n+1}-2^n)x\right]\le\left(\frac34\right)^{n-1}\tag*{}\,?$
Please suggest... Thanks in advance.