No, differentiability in a point only implies continuity in that specific point. A counterexample can already be found in one dimension:
$$f:\mathbb R\to\mathbb R,\quad f(x)=\begin{cases}x^2&x\in\mathbb Q\\0&\textrm{otherwise}\end{cases}$$
This function is differentiable in $0$, but not continuous anywhere other than $0$.
There is also a proof of the multi-variable chain rule which does not depend on the mean value theorem. A function $f:U\to\mathbb R^m$ with $U\subseteq \mathbb R^n$ open is differentiable in $x_0\in U$ iff there exists a linear map $\mathrm Df(x_0):\mathbb R^n\to\mathbb R^m$ and a function $R_f:U\to\mathbb R^m$ with $\lim_{x\to x_0}\frac{R_f(x)}{\Vert x-x_0\Vert}=0$ such that
$$f(x)=f(x_0)+\mathrm Df(x_0)(x-x_0)+R_f(x).$$
The same goes for a function $g:V\to\mathbb R^k$ with $U\subseteq\mathbb R^m$ open and $y_0\in V$. So if $g$ is differentiable in $y_0:=f(x_0)$, then
$$g(y)=g(y_0)+\mathrm Dg(y_0)(y-y_0)+R_g(y).$$
Insert $y_0=f(x_0)$ and $y=f(x)=f(x_0)+\mathrm Df(x_0)(x-x_0)+R_f(x)$ to get
$$\begin{align*}g\circ f(x)&=g(f(x_0))+\mathrm Dg(f(x_0))[f(x_0)+\mathrm Df(x_0)(x-x_0)+R_f(x)-f(x_0)]+R_g(y)\\
&=g(f(x_0))+\mathrm Dg(f(x_0))[\mathrm Df(x_0)(x-x_0)+R_f(x_0)]+R_g(x_0)\\
&=g(f(x_0))+\underbrace{\mathrm Dg(f(x_0))\mathrm Df(x_0)}_{=\mathrm D(g\circ f)(x_0)}(x-x_0)~+~\underbrace{\mathrm Dg(f(x_0))R_f(x_0)+R_g(y_0)}_{=:R_{g\circ f}}
\end{align*}$$
It is now straightforward to show that $R_{g\circ f}$ has the required property of
$$\lim_{x\to x_0}\frac{R_{g\circ f}(x)}{\Vert x-x_0\Vert}=0,$$
which makes
$$\mathrm D(g\circ f)(x_0)=\mathrm Dg(f(x_0))\mathrm Df(x_0).$$
And that's exactly the multi-variable chain rule.