Finding a root for the polynomial
$$f(x)=x^4-x-2$$
I just to double-check if I've done this correctly, as it's my first time doing so.
My work so far
In above function, $a=1$ and $b=2$ works, as $f(a)$ and $f(b)$ have opposite signs
$$f(1)=(1)^4-(1)-2=-2$$
$$f(2)=(2)^4-(2)-2=+12$$
Thus, I would presume the function is continuous and there must be a root within the interval $[1, 2]$. As the end points of the interval which brackets the root are $a_1=1$ and $a_2=2$, the midpoint must be
$$c_1=\frac{2+1}{2}=1.5$$
and the value at the midpoint is
$$f(c_1)=(1.5)^4-(1.5)-2=1.5625$$
\begin{array}{|c|c|c|c|} \hline Iteration& a_n & b_n & c_n & f(c_n) \\ \hline 1 & 1 & 2 & 1.5 & 1.5625 \\ \hline 2 & 1.5 & 2 & 1.75 & 5.628906 \\ \hline 3 & 1.5 & 1.75 & 1.625 & 3.3479 \\ \hline 4 & 1.5 & 1.625 & 1.5625 & 2.397964 \\ \hline 5 & 1.5 & 1.5625 & 1.53125 & 1.966493 \\ \hline 6 & 1.5 & 1.53125 & 1.515625 & 1.761131 \\ \hline 7 & 1.515625 & 1.53125 & 1.523438 & 1.862969 \\ \hline 8 & 1.515625 & 1.523438 & 1.519532 & 1.811845 \\ \hline 9 & 1.519532 & 1.523438 & 1.521485 & 1.837354 \\ \hline 10 & 1.519532 & 1.521485 & 1.520509 & 1.824593 \\ \hline 11 & 1.520509 & 1.521485 & 1.520997 & 1.83097 \\ \hline 12 & 1.520997 & 1.521485 & 1.521241 & 1.834161 \\ \hline 13 & 1.521241 & 1.521485 & 1.521363 & 1.521363 \\ \hline 14 & 1.521363 & 1.521485 & 1.521424 & 1.836556 \\ \hline 15 & 1.521363 & 1.521424 & 1.521394 & 1.836163\\ \hline \end{array}
After the 13th iteration, it becomes apparent there is a convergence to about 1.521. A root for the polynomial. Is my process correct? Also, I've tried this out for $f(x)=x^3-x-2$ and the root was 1.521 as well. Would this be due to the exponents being close in value?