I understand the definition of coprime, which is $\gcd(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}) = 1$ or $x(\frac{a}{\gcd(a,b)}) + y(\frac{b}{\gcd(a,b)}) = 1$.
I am pretty sure that I have to use the logic that $a = qb +r$ for $r = \{0,1,2,3, ..., b-1\}$
with the algorithm of Euclides this would mean that $$\gcd(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}) = \gcd(\frac{qb+r}{\gcd(a,b)},\frac{b}{\gcd(a,b)}) = \gcd(\frac{r}{\gcd(a,b)},\frac{b}{\gcd(a,b)})$$
Now given for that \gcd, I am unsure how to prove that this would mean that $\gcd(\frac{r}{\gcd(a,b)},\frac{b}{\gcd(a,b)}) = 1$.