0

How to show that, $\sum_{n=1}^N 1/n$ $\le$ 1 + logN, for N$\ge$5

A learner
  • 2,871

1 Answers1

4

hint

For any $ n\ge 2$, and any $ t\in [n-1,n] $,

$$\frac{1}{n}\le \frac 1t \;\implies$$

$$\int_{n-1}^n\frac {dt}{n}\le \int_{n-1}^n\frac{dt}{t} \;\implies$$ $$\frac{1}{n}\le \ln(n)-\ln(n-1)$$