Let $E_1$ and $E_2$ be vector fields on $U = \mathbb{R}^2\setminus (0,0)$ and let $\epsilon_1, \epsilon_2$ be the one-forms dual to $E_1$ and $E_2$ respectively. Suppose we have $$E_1(x,y) = \frac{x}{\sqrt{x^2+y^2}}\frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2+y^2}}\frac{\partial}{\partial y}$$ and $$E_2(x,y) = \frac{-y}{\sqrt{x^2+y^2}}\frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2+y^2}}\frac{\partial}{\partial y}$$
$\textbf{Question:}$ How do we compute $\epsilon_1$ and $\epsilon_2$?