Let $f(x) = \lfloor 1-x^2 \rfloor$ with $x \in [-2,2]$. Calculate:
$$F(x) = \int_{-2}^{x}f(t)dt$$
I know that:
$$f(x) = \begin{cases} -3 & : x \in [-2,-\sqrt{3})\\ -2 & : x \in [-\sqrt{3},-\sqrt{2})\\ -1 & : x \in [-\sqrt{2},-1)\\ 0 & : x\in [-1,1) \\ 1 & : x \in [1,\sqrt{2} )\\ 2 & : x \in [\sqrt{2}, \sqrt{3})\\ 3 & : x \in [\sqrt{3}, 2)\\ 4 & : x = 2 \end{cases}$$
But I don't remember how to integrate that function.
I remember that the result is a stepwise function, not of this kind.