Let me propose a "chemical approach" :
we want a mixture of elements of atomic weight $\{ 1,2,3,4 \}$ such that the resulting average atomic weight is $\pi$.
We should then have the following diophantine system
$$
\left( {\matrix{ 1 & 2 & 3 & 4 \cr 1 & 1 & 1 & 1 \cr } } \right)
\left( {\matrix{ {n_{\,1} } \cr {n_{\,2} } \cr {n_{\,3} } \cr {n_{\,4} } \cr } } \right)
= \left( {\matrix{ {22} \cr 7 \cr } } \right)
$$
where the solutions shall be non-negative.
The system is under-determined so we are free to add some further bounds, for instance that the mixture be
somehow "centered", e.g.
$$
\eqalign{
& \left( {\matrix{ 1 & 2 & 3 & 4 \cr 1 & 1 & 1 & 1 \cr 1 & { - 1} & { - 1} & 1 \cr 0 & { - 1} & 1 & 0 \cr } } \right)
\left( {\matrix{ {n_{\,1} } \cr {n_{\,2} } \cr {n_{\,3} } \cr {n_{\,4} } \cr } } \right)
= \left( {\matrix{ {N\,\pi } \cr N \cr 0 \cr 0 \cr } } \right) \cr
& {\bf A}\;{\bf n} = N\;{\bf p} \cr}
$$
Here I have chosen the matrix so that
$$
{\bf A}^{\, - \,1} \;{\bf p} = \left( {\matrix{
{\left( {13 - 4\pi } \right)/12} \cr
{1/4} \cr
{1/4} \cr
{\left( {4\pi - 7} \right)/12} \cr
} } \right)
$$
the limit to which the ratio of the concentrations shall tend contains all positive values.
Then we can arrange the sequence in such a way that the proportion of the elements tend to the above.
So starting with $N=12$ we get
$$
{\bf n}_{\,12}
= \left( {\matrix{{13 - 4\pi } \cr 3 \cr 3 \cr {4\pi - 7} \cr } } \right)
\buildrel {\left\lfloor {} \right\rfloor } \over \longrightarrow
\left( {\matrix{ 0 \cr 3 \cr 3 \cr 5 \cr } } \right)
\buildrel {n = 12} \over \longrightarrow
\left( {\matrix{ 1 \cr 3 \cr 3 \cr 5 \cr } } \right)
$$
I took the floor, but rounding would be good as well, and optionally adjust for the total quantity.
The further step for e.g. $N=120$ gives
$$
{\bf n}_{\,120} = \left( {\matrix{
{\left( {13 - 4\pi } \right)10} \cr
{30} \cr
{30} \cr
{\left( {4\pi - 7} \right)10} \cr
} } \right)\buildrel {\left\lfloor {} \right\rfloor } \over
\longrightarrow \left( {\matrix{
4 \cr
{30} \cr
{30} \cr
{55} \cr
} } \right)\buildrel {n = N} \over
\longrightarrow \left( {\matrix{
5 \cr
{30} \cr
{30} \cr
{55} \cr
} } \right)
$$
and we shall add to the sequence the ${\bf n}_{\,120} -{\bf n}_{\,12} $ elements.