Problem Let $V$ and $W$ be finite dimensional vector spaces over the field $F$. Prove that $V$ is isomorphic to $W$ iff $\operatorname{dim}V=\operatorname{dim}W$. \operatorname{dim} Attempt
$\Rightarrow$ Define a linear transformation $T$ from $V$ to $W$. Suppose $V$ is isomorphic to $W$ but $\operatorname{dim}V\neq \operatorname{dim}W$.Let $\operatorname{dim}V=m$ and $\operatorname{dim}W=n$ provided $m\neq n$. If $m<n$ then $T$ is not onto and if $m>n$ then $T$ is not one-one. Contradiction ,Thus $\operatorname{dim}V=\operatorname{dim}W$.
$\Leftarrow$ Suppose $\operatorname{dim}V=\operatorname{dim}W$. Let $(a_1,...,a_n)$ and $(b_1,...,b_n)$ be basis of $V$ and $W$ respectively. Define a linear transformation $T:V\rightarrow W$ such that $T(a_i)=b_i$ ,where $1\leq i\leq n$.
- $T$ is injective iff $T$ sends linearly independent set to linear independent. Let $a_1,...,a_n$ be vectors in $V$ and $a\in V$, then $$a=c_1a_1+...+c_n a_n$$
therefore $$c_1T(a_1)+...+c_n T(a_n)=0$$
$$T(c_1a_1+...+c_n a_n)=0=T(0)$$ Thus ,$c_1a_1+...+c_na_n=0$ and $c_1=...=c_n=0$. Thus the image set of $T$ linearly independent.
$T$ is onto. Since the nullity of $T$ is $0$.
$T$ is linear transformation: $$T(ca_i+a_j)=cb_i+b_j=cT(a_i)+T(a_j)$$.
Q.E.D. Is the proof correct?
\operatorname{dim}. It produces $\operatorname{dim}$. – K.defaoite Jun 24 '20 at 13:51