In the Dirac's $bra$ and $ket$ notation, $|x ~\rangle$ (pronounced as $ket~ x$ represents a column vector and $\langle y ~|$ (pronounced as $bra~y$) a row vector, such that $\langle x | y \rangle $ is the inner product. Consider the following:
$F(i,k) = \langle i | \Big(\sum\limits_{x=-L}^L |x-1\rangle \langle x|\Big)^{L-k} \Big(\sum\limits_{y=-L}^L |y+1\rangle \langle y|\Big)^{k}|0 \rangle$
Here, $L \in \{ 0,1,2,3, \dots \}$, $k \in \{ 0,1,2,3, \dots \}$, and $i \in \{ 0,1,2,3, \dots \}$, and $k \le L$. Also,
$| -L \rangle = \begin{pmatrix} 1\\0\\ \vdots \\ \end{pmatrix}_{2L+1,1} $, $\cdots$, $| L \rangle = \begin{pmatrix} \vdots \\0\\ 1 \\ \end{pmatrix}_{2L+1,1} $
What is the general form of $F(i,k)$?