0

In the Dirac's $bra$ and $ket$ notation, $|x ~\rangle$ (pronounced as $ket~ x$ represents a column vector and $\langle y ~|$ (pronounced as $bra~y$) a row vector, such that $\langle x | y \rangle $ is the inner product. Consider the following:

$F(i,k) = \langle i | \Big(\sum\limits_{x=-L}^L |x-1\rangle \langle x|\Big)^{L-k} \Big(\sum\limits_{y=-L}^L |y+1\rangle \langle y|\Big)^{k}|0 \rangle$

Here, $L \in \{ 0,1,2,3, \dots \}$, $k \in \{ 0,1,2,3, \dots \}$, and $i \in \{ 0,1,2,3, \dots \}$, and $k \le L$. Also,

$| -L \rangle = \begin{pmatrix} 1\\0\\ \vdots \\ \end{pmatrix}_{2L+1,1} $, $\cdots$, $| L \rangle = \begin{pmatrix} \vdots \\0\\ 1 \\ \end{pmatrix}_{2L+1,1} $

What is the general form of $F(i,k)$?

metamorphy
  • 43,591
Rob
  • 296

1 Answers1

1

A helpful observation in simplifying this is that $$ \Big(\sum\limits_{x=-L}^L |x-1\rangle \langle x|\Big)^{k} = \Big(\sum\limits_{x=-L-1}^{L-1} |x\rangle \langle x+1|\Big)^{k} = \sum\limits_{x=-L-1}^{L-k} |x\rangle \langle x+k|. $$ We can similarly observe (or use the adjoint of the above) to find that $$ \Big(\sum\limits_{y=-L}^L |y+1\rangle \langle y|\Big)^{k} = \sum\limits_{y=-L}^{L-k+1} |y+k\rangle \langle y|. $$ With that established, it is straightforward to verify that $$ F(i,k) = \langle i+L-k|k\rangle = \delta_{i+L,2k}. $$


Proof of first equation: proceed by induction. We note that $$ \begin{align} \Big(\sum\limits_{x=-L-1}^{L-1} |x\rangle \langle x+1|\Big)^{k} &= \Big(\sum\limits_{x=-L-1}^{L-1} |x\rangle \langle x+1|\Big)\Big(\sum\limits_{x=-L-1}^{L-1} |x\rangle \langle x+1|\Big)^{k-1} \\ & = \Big(\sum\limits_{x=-L-1}^{L-1} |x\rangle \langle x+1|\Big)\Big(\sum\limits_{y=-L-1}^{L-k+1} |y\rangle \langle y+k-1|\Big)^{k-1} \\ & = \sum\limits_{x=-L-1}^{L-1} \sum\limits_{y=-L-1}^{L-k+1} |x\rangle \langle x+1|y\rangle \langle y+k-1| \\ & = \sum\limits_{x=-L-1}^{L-1} \sum\limits_{y=-L-1}^{L-k+1} \delta_{x+1,y} |x\rangle \langle y+k-1| \\ & = \sum\limits_{x=-L-1}^{L-k} |x\rangle \langle (x+1)+k-1| = \sum\limits_{x=-L-1}^{L-k} |x\rangle \langle x + k|. \end{align} $$

Ben Grossmann
  • 234,171
  • 12
  • 184
  • 355