Problem from Conway's "A course in point set topology": If for $k=1,2, A_k$ is a dense subset of the metric space $(X_k,d_k)$, then show that $A_1\times A_2$ is a dense subset of $X_1\times X_2$.
My attempted solution: Suppose $A_k\subseteq X_k$ is dense $\Rightarrow cl(A_k)=X_k\Rightarrow \forall r_k,\space B(x_k,r_k)\cap A_k\neq \varnothing$ so take $y_k\in B(x_k,r_k)\cap A_k$. Take $r=max\{r_1,r_2\}$ so that for $(y_1,y_2)\in B((x_1,x_2),r)\Rightarrow B((x_1,x_2),r)\cap A_1\times A_2\neq \varnothing$ whenever $(y_1,y_2)\in B((x_1,x_2),r)\cap A_1\times A_2\Rightarrow (y_1,y_2)\in cl(A_1)\times cl(A_2)\Rightarrow (y_1,y_2)\in X_1\times X_2$ since both $A_1$ & $A_2$ are both dense $\Rightarrow cl(A_1\times A_2)=X_1\times X_2$
Please drop a line if you think my proof is right, and of course, let me know how to improve