If A is an invertible $nxn$ matrix prove that:$ adj(adjA)=(A)(detA)^{n-2}$ I have done this but it somewhere went wrong: $ adj(adjA)=adj(A^{-1} detA)=(A^{-1}detA)^{-1} det(A^{-1}detA)=AdetA det(A^{-1}detA)= Adet(AA^{-1}detA)=A (detA)^n $
Asked
Active
Viewed 202 times
2 Answers
0
For all invertible matrices $A$ and $\lambda\neq0,$ $(\lambda A)^{-1}=\frac1\lambda A^{-1}$.
P..
- 15,189
0
There are errors in what you have typed. Let me point out the first one.
$ \begin{align} adj(adjA) & =adj(A^{-1} detA)\\ & =(A^{-1}detA)^{-1} det(A^{-1}detA)\\ & =AdetA det(A^{-1}detA) \\ \end{align} $
It should be $ \frac{1}{\det A } $.
Fix that first.
Calvin Lin
- 77,541