The assignment that I am having trouble with is as follows:
a) Use the fact that $\lim_{n\rightarrow\infty}n^3\left(\frac{1}{n}-\sin\left(\frac{1}{n}\right)\right)=\frac{1}{6}$ to show that
$$\sum_{n=0}^\infty\left(\frac 1n-\sin\left(\frac 1n\right)\right)$$
converges.
b) Determine the radius of convergence of the power series $$\sum_{n=0}^\infty\left(\frac 1n-\sin\left(\frac 1n\right)\right)x^n$$
I am having real trouble with computing the limit $$\lim_{n\rightarrow\infty}\left\lvert\frac 1n-\sin\left(\frac 1n\right)\right\rvert^{\frac1n}=r^{-1}$$ Here r is the radius of convergence.