Let $E=\{(x,y,z)\in \mathbb{R}^3: z>1, \ z^2(x^2+y^2)<1 \}$ and $$f_{a}(x)=\frac{1}{(x^2+y^2+z^2)^a}$$
I need to find all $a\in \mathbb{R}$ such that $f_a\in L^1(E).$
I already know a solution to this problem, and I want to understand why mine is wrong.
My attempt
1) [Measurability check]
First of all $E$ is open in $\mathbb{R}^3$ being a union over all $z>1$ of open disks of radius $\frac{1}{z}$: $E=\bigcup_{z>1} E_z=\bigcup_{z>1}\{(x,y): x^2+y^2<\frac{1}{z^2}\}.$ Next, since $z>1,$ $f_a$ looks continous on every point of $E,$ thus is measurable.
2) [Positivity]
The function $f_a$ is strictly positive for every $a\in \mathbb{R},$ thus to check integrability we can reduce ourselves to compute $$\int_E f_a \ d(x,y,z)$$ and by positivity of the function we can apply Tonelli's theorem, rewriting the integral as
$$\int_1^{+\infty}\int_{x^2+y^2<\frac{1}{z^2}} f_a \ \ d(x,y) \ d(z)$$
3)[Polar coordinates]
We now compute the inner integral using polar coordinates to obtain
$$\int_{x^2+y^2<\frac{1}{z^2}} f_a \ \ d(x,y)= \int_0^{2\pi} \int_0^{1/z} \frac{r}{(r^2+z^2)^a} \ dr d\theta= 2\pi \int_0^{1/z} \frac{r}{(r^2+z^2)^a} \ dr =...$$
changing variable $r\mapsto \ t= \phi(r)=r^2+z^2 $
$$...=\pi \int_{z^2}^{1/z^2+z^2} \frac{1}{t^a} \ dt= F(z,a) $$
4) [Computation by cases]
4.i)
For $a=1,$ we have $F(1,z)= \log(1/z+z^2)-\log(z^2)$ and $$\int_1^{+\infty}\log(1/z^2+z^2)-\log(z^2) \ dz= \int_1^{+\infty} \log(z^2(1/z^4+1))-\log(z^2) \ dz= \int_1^{+\infty}\log(1+1/z^4) \ dz < +\infty$$ and so $f_{a=1}\in L^1(E).$
4.ii)
Now we let $a \neq 0,$ and we have
$$\int_{z^2}^{1/z^2+z^2}t^{-a} \ dt=\frac{(1/z^2+z^2)^{1-a}}{1-a}-\frac{(z^2)^{1-a}}{1-a}$$ and we have to evaluate $$\int_1^{+\infty}\frac{(1/z^2+z^2)^{1-a}}{1-a}-\frac{(z^2)^{1-a}}{1-a} \ dz $$ But
$$\int_1^{+\infty}\frac{(1/z^2+z^2)^{1-a}}{1-a}-\frac{(z^2)^{1-a}}{1-a} \ dz \geq \int_1^{+\infty}\frac{(1/z^2)^{1-a}}{1-a}+ \frac{(z^2)^{1-a}}{1-a} -\frac{(z^2)^{1-a}}{1-a} \ dz= \int_1^{+\infty}\frac{(1/z^2)^{1-a}}{1-a} \ dz > +\infty$$
for $0<2-2a\leq 1 \iff 0<1-a \leq \frac{1}{2} \iff a \geq \frac{1}{2}$ so that $f_a \notin L^1(E)$ for $a \geq \frac{1}{2};$
on the other hand, we have
$$\int_1^{+\infty}\frac{(1/z^2+z^2)^{1-a}}{1-a}-\frac{(z^2)^{1-a}}{1-a} \ dz \leq \int_1^{+\infty}\frac{(1/z^2+z^2)^{1-a}}{1-a} \ dz$$
and since in a ngbh of $+\infty$ $$1/z^2+z^2 \sim z^2 $$ the latter is finite if and only if $$\int_1^{+\infty}\frac{(1/z^2)^{1-a}}{1-a}<+\infty$$
if and only if
$$2-2a >1 \iff a<\frac{1}{2}$$
Can someone proof-read and tell me if there are any mistakes?
The other solution I have, using spherical coordinates, has $f_a $ integrable $\iff$ $a=3/2$ or $a>-\frac{1}{2}, $ while my solution gives $f_a$ integrable iff $a=1$ or $a<\frac{1}{2}$. I want to understand what went wrong with my solution.