The following problem arose in the process of showing the convergence of a particular regression algorithms.
Let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space. Suppose that $X,X_1,X_2,...:\Omega\to(0,+\infty)$ are $\mathbb{P}-$i.i.d. random variables such that $\forall r>0, \mathbb{P}(X<r)>0$.
Let $r>0$. Is it true that \begin{equation} \mathbb{E}\left[\sum_{k=1}^m \frac{\frac{1}{X_k}}{\sum_{j=1}^m \frac{1}{X_j}}\chi_{(r,+\infty)}(X_k)\right]\to0,m\to\infty? \end{equation} If so, can we somehow specify the speed of convergence in terms of the quantity $m\mathbb{P}_X\big((0,r]\big)$?